Odborná špecifikácia vanádu
Vanád je kovový prvok, ktorý sa bežne nachádza v potravinách, vode, pôde, vzduchu a v ľudskom tele. Rovnako ako niektoré ďalšie toxické ťažké kovy, stopové množstvo vanádu sa považuje za nevyhnutné pre ľudské zdravie. Niektorí odborníci sa domnievajú, že tento minerál pomáha telu metabolizovať a zároveň podporuje silné kosti a zuby, plodnosť, správnu funkciu štítnej žľazy a produkciu určitých hormónov. V priemysle sa vanád používa ako prísada pri výrobe ocele, keramiky a skla.
Vanád si nájde cestu do tela hlavne prostredníctvom potravy a vody, ale aj dýchaním. Avšak iba asi 5 - 10% tohto minerálu sa v skutočnosti absorbuje v tele, kde sa hromadí prebytok vanádu a môže dosiahnuť toxickú hladinu. Vysoký obsah bielkovín, vitamínu C, železa, hliníka a chloridov v strave bráni absorpcii vanádu v tele. Neabsorbovaný vanád sa zvyčajne vylučuje výkalmi.
Vanád je 21. najpočetnejším prvkom v zemskej kôre a 2. najpočetnejším prechodným kovom v morskej vode. Prvok je všadeprítomný aj v sladkých vodách a živinách. Priemerné zaťaženie tela človeka predstavuje 1 mg. Všadeprítomnosť vanádu brzdí kontroly zamerané na jeho nevyhnutnosť. Pretože však vanadát možno považovať za dôkladný návrh fosfátu, pokiaľ ide o jeho nahromadenie, vanadát pravdepodobne preberá regulačnú funkciu v metabolických procesoch v závislosti od fosfátu. Pri bežných koncentráciách je vanád netoxický. Hlavným zdrojom potenciálne toxických účinkov spôsobených vanádom je vystavenie vysokému zaťaženiu oxidmi vanádu vo vzduchu priemyselných podnikov na spracovanie vanádu. Vanád môže vstúpiť do tela pľúcami alebo, obyčajne, žalúdkom. Väčšina diétneho vanádu sa vylučuje. Množstvo vanádu resorbovaného v gastrointestinálnom trakte je funkciou jeho oxidačného stavu (VV alebo VIV) a koordinačného prostredia. Zlúčeniny vanádu, ktoré vstupujú do krvného obehu, podliehajú špeciácii. Dominantnými druhmi vanádu v krvi sú vanadát a vanadyl viazané na transferín. Z krvi sa vanád distribuuje do telesných tkanív a kostí. Kosti fungujú ako zásobná plocha pre vanadát. Vo vodnej chémii vanádu (V) pri koncentrácii <10 μM dominuje vanadát. Pri vyšších koncentráciách prichádzajú oligovanadáty, najmä dekavanadát, ktorý je termodynamicky stabilný v rozmedzí pH 2,3–6,3 a pri vyššom pH sa môže ďalej stabilizovať interakciou s proteínmi.
Podobnosť medzi vanadátom a fosforečnanmi predstavuje vzájomné pôsobenie medzi enzýmami závislými od vanadátu a fosfátov: môžu byť inhibované fosfatázy, aktivované kinázy. Pokiaľ ide o liečivé aplikácie zlúčenín vanádu, zdá sa, že spôsob účinku vanádu súvisí s antagonizmom fosfát-vanadičnanu, s priamou interakciou zlúčenín vanádu alebo ich fragmentov s DNA a s príspevkom vanádu k vyváženej hladine reaktívnych v tkanive. kyslíkové druhy. Zlúčeniny vanádu zatiaľ nenašli súhlas s lekárskymi aplikáciami. Antidiabetický (inzulín zvyšujúci) účinok singulárneho komplexu vanádu, bis (etylmaltolato) oxidovanadu (IV) (BEOV), odhalil povzbudivé výsledky v klinických testoch fázy IIa. Okrem toho štúdie in vitro s bunkovými kultúrami a parazitmi, ako aj štúdie in vivo na zvieratách, odhalili široké potenciálne spektrum pre aplikáciu koordinačných zlúčenín vanádu pri liečbe srdcových a neuronálnych porúch, malígnych nádorov, vírusových a bakteriálnych infekcií (ako je chrípka, HIV a tuberkulóza) a tropické choroby spôsobené parazitmi, napr. Chagasova choroba, leishmanióza a amébiáza.
Vanád je všestranný a všadeprítomný prvok, ktorý môže dosiahnuť oxidačné stavy - III až + V. Nízko valentný vanád je stabilizovaný silne π-prijímajúcimi ligandmi, najmä oxidom uhoľnatým, vysoko valentný vanád donormi σ a π predstavovanými tvrdými, kyslíkovými a dusíkatými funkčnými ligandmi. Mäkké ligandy, ako sú tiofunkčné, sa nachádzajú predovšetkým v zlúčeninách vanádu s vanádom v stredných oxidačných stavoch. Vanádová dusíkatá látka je príkladom prirodzene sa vyskytujúcej zlúčeniny vanádu, kde sa vanád prepína medzi oxidačnými stavmi + II a + IV: Vo vanádovej dusíkatej látke z baktérií fixujúcich dusík, ako je Azotobacter, je vanád - integrálna súčasť klastra Fe7VS9 M - koordinované na tri sulfidy, histidín-N a dve kyslíkové funkcie homocitrátu. Vanád (III) koordinovaný s molekulami vody je prítomný vo vanadocytoch morských striekačiek. Oxidačné stavy + IV a + V, ktoré vo fyziologicky relevantných vanádových systémoch jednoznačne prevládajú, zvyčajne obsahujú „jadro“ VIVO2 +, VVO3 + alebo VVO2 +, aj keď existujú výnimky. Príkladom „holého“ komplexu vanádu (IV) je prirodzene sa vyskytujúci amavadín, kde je V4 + koordinovaný na dva tetradentátové N-oxyimino-2,2'-dipropionátové ligandy. Amavadín sa nachádza v hubách patriacich do rodu Amanita, ako napríklad muchovník. Oxidovanádiové (V) jadro je prítomné vo vanadično-závislých haloperoxidázach, okrem iného z morských rias, s vanadátom H2VO4− koordinovane spojeným s aktívnym centrom histidín-N.
Doteraz zostali haloperoxidázy závislé od vanadátu a dusičnany vanádu jediné identifikované prirodzene sa vyskytujúce enzýmy na báze vanádu. Či je vanád základným prvkom pre evolučne mladšie organizmy vrátane stavovcov, je potrebné overiť. Je pravdepodobná funkčná úloha jednoduchých zlúčenín vanádu (najmä vanadátu) u stavovcov, a teda aj u ľudí, čo je predpoklad, ktorý je založený na podobnosti medzi vanadátom a fosfátom. V tomto kontexte sú haloperoxidázy závislé od vanadátu obzvlášť zaujímavé, pretože napodobňujú alebo modelujú enzýmy zapojené do metabolizmu fosfátov, kde je doména viažuca proteín pre fosfát blokovaná vanadátom.
Konkurenčné správanie vanadičnanu vo vzťahu k fosforečnanom je pravdepodobne tiež kľúčom k inzulínovo mimetickému / inzulín zvyšujúcemu potenciálu zlúčenín vanádu, a teda k vzostupu dizajnu antidiabetických komplexov vanádu za posledné dve desaťročia. Tento priaznivý vývoj tiež inicioval výskum smerujúci k návrhu biologicky aktívnych komplexov vanádu pri hľadaní farmakologickej kontroly rakoviny, kardiovaskulárnej nerovnováhy a chorôb spôsobených vírusmi, baktériami, amébami a bičíkovými prvokmi. V niekoľkých prípadoch sa použili ligandy, ktoré sa týkajú originálnych farmakologicky aplikovaných liekov, s cieľom zvýšiť účinnosť lieku a rozšíriť spektrum terapeutického použitia využitím spoločného účinku kovu a ligandu. Výskum týchto medicínskych aplikácií zahrnuje funkčné alternatívy antagonizmu fosforečnanu a vanadátu, napríklad priamu interakciu zlúčeniny vanádu s DNA nádorovej bunky alebo patogénu.